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We study a structure consisting of a ferromagnetic �F� layer coupled to two normal metal �N� leads. The
system is driven out of equilibrium by the simultaneous application of external dc and ac voltages across the
N/F/N structure. Using the Keldysh diagrammatic approach, and modeling the ferromagnet as a classical spin
of size S�1, we derive the Langevin equation for the magnetization dynamics and calculate the noise cor-
relator. We find that the noise has an explicit frequency dependence in addition to depending on the charac-
teristics of the ac and dc drive. Further, we calculate the current-voltage characteristics of the structure to
O�1 /S2� and find that the nonequilibrium dynamics of the ferromagnetic layer gives rise to corrections to the
current that are both linear and nonlinear in voltage.
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I. INTRODUCTION

Magnetization dynamics in small nanomagnets has re-
cently attracted a lot of theoretical1–5 and experimental6,7 at-
tention due to advances in manufacturing magnetic nano-
structures. The topic of magnetization noise has become an
exciting subject owing to its possible influence on magneti-
zation switching2 and conductivity of these structures.8 It has
been shown that the noise in magnetic structures, such as
spin valves, can be colored, i.e., it can have a nontrivial
frequency dependence.9 In diffusive metallic conductors col-
ored noise has been observed experimentally,10 however in
magnetic structures it still requires further investigation.

Experiments involving magnetic nanostructures typically
involve the simultaneous application of dc and ac voltage
where the ac bias is found to aid the magnetization switch-
ing. Therefore in this paper we study a normal metal/
ferromagnet/normal metal �N/F/N� structure which has been
driven out of equilibrium by the simultaneous application of
a dc and ac voltage. We show that the effect of this driving is
to produce a noise in the magnetization dynamics that is
colored. In addition we determine how the I-V characteristics
of the device are affected by the dynamics of the ferromag-
netic layer.

The schematic of the N/F/N structure we study is shown
in Fig. 1. The ferromagnetic layer is assumed to be small so
that it may be modeled as a single-domain magnet. At the
same time, the spin of the magnet is considered to be large
�spin S�1� so that it can be treated as a classical variable.
The aim of this paper is twofold, one is to derive the Lange-
vin equation for the magnetization dynamics and second is to
present a calculation of the I-V characteristics. In the absence
of any magnetization dynamics, the N/F/N structure is
Ohmic.11 We show that the dynamics of the ferromagnet
gives rise to corrections to the I-V characteristics that are
both linear and nonlinear in voltage.

The paper is organized as follows. In Sec. II we present
the model. In Sec. III we study the nonequilibrium properties
of the model in the limit S→�, when the magnetization is
static. In Sec. IV we study small fluctuations of the magne-
tization about the ordering direction thus deriving the Lange-
vin equation and the noise spectrum. The results of this sec-
tion are then used in Sec. V to calculate the corrections to the
current-voltage characteristics arising due to the magnetiza-
tion fluctuations. Finally in Sec. VI we summarize our re-
sults.

II. MODEL

We consider a model Hamiltonian H=Hm+Hl+Ht, where
Hm describes the ferromgnetic layer, Hl represents the two
normal-metal leads, and Ht models the tunneling between the
leads and magnetic layer. The Hamiltonian for the magnetic
layer Hm is

Hm = − �DSz
2 + BSz� + J�

i

S · si + �
k�

�k
ddk�

† dk�. �1�

Here the first term models a material �or shape� anisotropy
with the anisotropy constant D, the second term describes the
interaction of the macrospin S with the magnetic field B
applied for simplicity in the same z direction as the aniso-
tropy. The third term describes the interaction of the mac-
rospin with the spins of the itinerant electrons si as in the s-d
model. It can be rewritten as J�i�Szszi+S+s−i+S−s+i�, where
S�= �Sx� iSy� /2, s�i=sxi� isyi, and si

= 1
2�k,�,�,�dk�,�

† ���dk�,� with ��� being the components of
Pauli matrices. Here dk�

† �dk�� creates �destroys� an electron
in state with momentum k and spin component �. The pure
macrospin part of the Hamiltonian can be rewritten as
−�DSz

2+BSz��const+bS+S−, where the constant part is
−DS2−BS and b=4�D+B / �2S��. Nanomagnets are typically
characterized by a significant anisotropy. This along with the
fact that S�1 implies that the fluctuations of the nanomag-
net about the ordering direction are small. Our theoretical
treatment will therefore involve a perturbative expansion in
spin fluctuations, which as we shall show is equivalent to an
expansion in 1 /S.
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FIG. 1. �Color online� A sketch of the N/F/N structure. The left
and right normal-metal leads are coupled through tunnel barriers to
the ferromagnetic layer.
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We assume that the electrons in the leads are noninteract-
ing. To model the ac bias voltage we introduce a time depen-
dence of the lead single-particle energies,12 namely, �k��t�
=�k�

0 +Vac cos�	0t+
�� where � labels the left �L� or right
�R� lead, and Vac ,	0 are, respectively, the amplitude and
frequency of the ac bias. Thus, the lead Hamiltonian is

Hl = �
k�,��L,R

�k��t�ck��
† ck��. �2�

The coupling between the leads and magnetic layer is

Ht = �
k,k0,�,��L,R

�t�ckk0��
† dk� + H.c.� . �3�

In Eq. �2� k= �k ,k0� where k is a two-dimensional momen-
tum in the plane perpendicular to the tunneling direction and
is assumed to be conserved on tunneling.

To study this nonequilibrium problem we employ the
Keldysh formalism.3,13 We introduce variables Scl= �S+

+S−� /2 and Sq= �S−−S+� /2 where the upper � indices cor-
respond to the time-ordered �antitime-ordered� directions on
the Keldysh contour, and the Keldysh path integral takes the
form, ZK=�D�Scl ,Sq�e−iSK. Here SK is the effective action
for the macrospin obtained formally by integrating out all
fermionic degrees of freedom

SK = 2b Tr�S+
clS−

q + S+
qS−

cl�

+ i Tr ln�ĝd�
−1 − �̂ − JŜz

�z

2
− JŜ+�− − JŜ−�+	 , �4�

where Ŝa=z,�= ��
Sa

cl Sa
q

Sa
q Sa

cl � and ĝd�= �
gd�

R gd�
K

0 gd�
A � are the Green’s func-

tions of the free electrons in the magnetic layer, �z, ��

= ��x��y� /2 are Pauli matrices, and �̂= � �R �K

0 �A � is the self-

energy due to coupling to the leads. As we shall show, �̂
depends on the ac and dc bias and is independent of � be-
cause the leads are nonmagnetic. In what follows we make
the assumption that the fluctuations of the macrospin from

the ordering direction are small. Thus we write JŜz=JS

+J�Ŝz and eventually expand Eq. �4� perturbatively in the

fluctuations �Ŝz , Ŝ�.

III. GREEN’S FUNCTIONS IN THE MAGNETIC LAYER

We first discuss the properties of the nonequilibrium sys-
tem when the magnetization does not fluctuate. Denoting G0
to be the Green’s function of the electrons in the magnetic

layer when �Ŝz= Ŝ�=0, Eq. �4� implies

�G0�
R �−1 = �gd�

R �−1 − �R − JS
�

2
, �5a�

G0�
K = G0�

R � �K � G0�
A . �5b�

The symbol � in Eq. �5� denotes convolution in the time
domain and the self-energies due to coupling to leads are

�R�K��t,t�� = �
k0,�

t�
2gk��

R�K��t,t�� . �6�

gk��
R�K� are the retarded and Keldysh components of the elec-

tron Green’s function in the leads and are defined as

gk��
R �t,t�� = − i�t − t��
�ck���t�,ck��

† �t��� , �7a�

gk��
K �t,t�� = − i
�ck���t�,ck��

† �t��� . �7b�

Since ck���t�=e−i�−�
t dt1�k��t1�ck���−��, we find

gk��
R �t,t�� = − i�t − t��e−i�

t�
t

dt1�k��t1�, �8a�

gk��
K �t,t�� = − i�1 − 2f��k�

0 − ����e−i�
t�
t

dt1�k��t1�, �8b�

where f is the Fermi-distribution function in the leads and we
have used that 
�ck���−�� ,ck��

† �−���=1−2f��k�
0 −���,

where �� is the chemical potential of lead � and a dc bias
corresponds to �L��R. Using the identity ez�a−1/a�/2

=�n=−�
� anJn�z�, where Jn�z� are Bessel functions of the first

kind, we find

gk��
R �t,t�� = − i�t − t��e−i�k0k�

0 �t−t��

� � �
n=−�

�

Jn
2�Vac

	0
�e−in	0�t−t��

+ �
n�m

Jn�Vac

	0
�Jm�Vac

	0
�ei
��m−n�−i	0�mt�−nt�	 .

�9�

Changing variables to �= t− t� and T= �t+ t�� /2 one may
write mt�−nt= �n−m�T+ �n+m�� /2. In what follows we av-
erage Green’s functions over time T�	0

−1, where the aver-
aging is denoted by gk��t , t��. This is justified when the mag-
netization dynamics is slow compared to 	0

−1 �a precise
condition for this will be given in Sec. IV�.

As a result of the time averaging, the terms corresponding
to n�m in Eq. �9� vanish. This leads to a time-averaged
retarded self-energy �R�	�=−i���L,R�� where ��=��t�

2 is
the decay rate of the electrons into the leads, and � is the
density of states in the leads. In what follows we will assume
�� to be independent of energy. From Eq. �6�, the time-
averaged Keldysh component of the self-energy becomes

�̃K�	� = − 2i�
�

�� �
n=−�

�

Jn
2�Vac

	0
��1 − 2f�	 − n	0 − ���� .

�10�

The above discussion implies that the spectral function of
electrons in the magnetic layer A0�=−Im�G0�

R � is the same as
in equilibrium, A0��k ,	�=� / ��	−�k

d −���2+�2�, where �
=�L+�R and the exchange splitting �=JS /2. We will as-
sume ��� so that the ferromagnetism of the conduction
electrons is well defined. Further, the nonequilibrium distri-
bution function fneq of the electrons in the magnetic layer,
defined as G0�

K �k ,	�=−2iA0��k ,	��1−2fneq�	��, is
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fneq�	� = �
�

��

�
�

n

Jn
2�Vac

	0
� f�	 − n	0 − ��� , �11�

Below we consider the case of zero temperature when the
Fermi function f�	�=�−	�. A typical fneq�	� is plotted in
Fig. 2. While in the pure dc case fneq�	� is a weighted sum of
Fermi functions of the left and right leads, the ac bias adds
steps to fneq at frequencies ��n�	0 corresponding to photon
absorption and emission.

IV. LANGEVIN EQUATION

We expand the effective action, Eq. �4�, to quadratic order
in the fluctuations to obtain

SK = 2b Tr�S+
clS−

q + S+
qS−

cl� + �Sz
cl�zz

R Sz
q + H.c.� + Sz

q�zz
KSz

q

+
1

2 �
�,�=x,y

�S�
q���

K S�
q + �S�

cl���
R S�

q + H.c.�� , �12�

where ���
R are the components of the polarization operator

that are calculated following standard techniques.3 Note that
�xx�	�=�yy�	� and �xy�	�=−�yx�	�. Moreover, to leading
order in spin fluctuations �zz does not play a role. For small
frequencies 	��, we find

�xx
R �	� � − i�xx	, �xy

R �	� � − i�xy	 , �13a�

�xx = J2�
�

�2 + �2 , �xy = J2�
�

�2 + �2 . �13b�

Note that �xy = �

� �xx.
The action, Eq. �12�, may be diagonalized in the basis

S�
cl = �Sx

cl� iSy
cl� /2 thus yielding the Langevin equation3

bS�
cl + ��xx � i�xy�Ṡ�

cl = ��, �14�

where ��= ��x� i�y� /2 is an auxiliary field representing
noise whose correlator is given by 
�a=x,y�	��b=x,y�−	�
= i�ab

K �	�. We have found an analytical expression for �K in
terms of a double sum over squares of Bessel functions. For
Vac�	0 we may keep only terms corresponding to single-
photon absorption and emission processes. For �L=−�R
=V /2 and 	�� the noise correlator is


�x�	��x�− 	� = i�xx
K �	� � 2�xx��L�R

�2 ��	 + V� + �	 − V��

+
�L

2 + �R
2

�2 �	� + � Vac

2	0
�2

�
j=�1

��L
2 + �R

2

�2 �	

+ j	0� +
�L�R

�2 ��	

+ j	0 + V� + �	 + j	0 − V��	� . �15�

Similarly, the off-diagonal component 
�x�	��y�−	�
= i�xy

K �	� is

�xy
K �	� � J2�

��	

��2 + �2�2�
n,m

Jn
2�Vac

	0
�Jm

2 �Vac

	0
�

� �
�,�=L,R

����

�2 �	 + �m − n�	0 + �� − ��� .

�16�

An effective temperature Teff may be extracted from the
zero-frequency limit of the noise correlator. Equation �15�
implies Teff���L�R /�2�V+ �Vac /2	0�2�	0+ �2�L�R /�2��V
−	0��V−	0�� and therefore has a discontinuity14 at V=	0.
In the opposite limit of 	�� the noise correlator vanishes as
�1 /	 as expected.

Equation �14� can be rewritten in the form of a stochastic
Landau-Lifshitz-Gilbert equation15

Ṡ = �S � Heff − �0S � Ṡ + ��, �17�

where � is the gyromagnetic ratio, Heff=bẑ / ���xy� is an ef-
fective magnetic field, the noise is ��= 1

�xy
ẑ��, and the Gil-

bert damping constant is �0=�xx /�xy =� /�.
In order to determine how the magnetization dynamics

affects the I-V characteristics we will need the spin response
and correlation functions. From Eq. �12� the spin-spin re-
sponse function is

D−+
R �	� = i
S−

cl�	�S+
q�− 	� =

1

b − �xy	 − i�xx	
�18�

whereas the spin-spin correlation function is

D−+
K �	� = i
S−

cl�	�S+
cl�− 	� = −

��xx
K − i�xy

K ��	�
�b − �xy	 − i�xx	�2

�19�

and D+−
R�K����=D−+

R�K��−��. As expected in equilibrium �V
=Vac=0� the components of both D�	� and ��	� satisfy the
fluctuation-dissipation theorem.

It is instructive to take the inverse Fourier transform of
Eq. �19� to obtain the time dependence of the transverse
spin-spin correlation function
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1.0

�6 �4 �2 0 2 4 6
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a) b)

FIG. 2. �Color online� Distribution function of electrons in the
magnetic layer fneq�	� given by Eq. �11�: �a� pure ac voltage case,
�L=�R=0 and Vac /	0=0.5; �b� the case of nonzero ac and dc
voltages, the parameters are �L=�R, �L=−�R=1.5	0, and
Vac /	0=0.5. Frequency 	 is measured in units of 	0.
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S−
cl�t � 0�S+

cl�0� =
�i�xx

K + �xy
K ��	1�

2b�xx
e−t/�−it/�1, �20�

where 	1=b��xy − i�xx� / ��xy
2 +�xx

2 �, �=�J2 / �b��, and �1
=2�J / �bS�. Equation �20� shows that the spin-spin correla-
tions decay with the characteristic time �. Thus as long as
1 /	0��, the macrospin dynamics is rather slow and we can
use the time-averaging procedure for the Green’s functions
outlined in Sec. III.

V. CURRENT-VOLTAGE CHARACTERISTICS

We will now study how the current-voltage characteristics
of the magnetic junction are affected by the magnetization
dynamics of the ferromagnetic layer. We employ the Jauho-
Meir-Wingreen formula12 for the tunneling current

I =
e

�
� d�

2�
�
k,�

�f�� − �L� − f�� − �R��
4�L�R

�
A�k,�� .

�21�

In the following we calculate the leading correction to the
spectral function A�=−Im�G�d

R � due to coupling to spin fluc-
tuations. The spectral function is determined from the Dyson
equation �G�d

R �−1= �G�0
R �−1−��d

R , where ��d is the self-energy
due to coupling to spin fluctuations. To one-loop order ��d

R

=��d
eR +��d

hR, where ��d
eR and ��d

hR are, respectively, the ex-
change and Hartree contributions to the self-energy, see Fig.
3. To leading order in the fluctuations, it suffices to do per-
turbation theory in J2 so that Gd�

R =G0�
R +�Gd�

R with

�Gd�
R = G0�

R ��d
R G0�

R . �22�

Note that �↑d and �↓d are related by �↔−�.
The exchange contribution to the self-energy is

�↓d
eR�k,�� = −

iJ2

2
� d	

2�
�Gd↑

R �k,	 + ��D−+
K �	�

+ Gd↑
K �k,	 + ��D−+

A �	�� . �23�

Keeping terms to leading order in J2, �eR is purely real and
given by

�↓d
eR�k,�� = −

J2

�b
�
�

��

� ��

2
+ arctan

�k
d + � − ��

�

+ � Vac

2	0
�2�� + �

m=�1
arctan

�k
d + � + m	0 − ��

�
�	 .

�24�

The Hartree contribution to the self-energy is given by

�↓d
hR�k,�� = −

iJ2

2
D+−

A �	 = 0�� �d��� d	�

2�
Gd↑

K ���,	��

where D+−
A �	=0�=1 /b and we have set �k�→��d��. Note

that the Hartree contribution is independent of external fre-
quency and momentum, and therefore only shifts the position
of the pole of Gd

R but does not contribute to the corrections to
the current.

We denote the total current averaged over time T�1 /	0

as Ī= I0+�Ī where

I0 = 4
e

�

��L�R

�
V �25�

is the current for a static ferromagnet while �Ī is the leading
correction due to spin fluctuations computed from Eqs. �21�,
�22�, and �24� for �L=−�R=V /2

�Ī

I0
�

�J2

2�b�2�1 +
�2

�2���1 +
Vac

2

2	0
2��1 +

�3�2 − �2�V2

12��2 + �2�2 	
+

Vac
2

16
� 3�2 − �2

��2 + �2�2 +
��5�2 − �2�2V2

2��2 + �2�4 	� . �26�

Since ��JS, this correction to the current is O�� /bS2�.
Thus our perturbative treatment in spin fluctuations is valid

as long as b�0 and S�1. Moreover the correction �Ī�0.
This is because scattering off spin fluctuations in this geom-
etry produces additional channels for electron conduction �in
contrast to a bulk geometry where this scattering would
cause the conductivity to decrease�. It is worth mentioning
that ac bias contributes to the Ohmic corrections as well with
terms such as ��Vac

2 /�2�V and �Vac
2 /	0

2�V. For the pure dc
case �Vac=0�, we find that the differential conductance g
=e� I /�V for ��� is

g = 4
e2

�

��L�R

�
�1 +

J2�

2�b�2�1 +
3V2

4�2�	 . �27�

Note that the quadratic in voltage corrections in Eq. �27�
are similar in spirit to temperature corrections ��T2� to the
conductance. Also, our result is for a particular choice of
chemical potentials �L=−�R=V /2. The answer, in general,
will change if a different choice, such as �L=V and �R=0,
were used. The reason for this difference is that the symmet-
ric combination of chemical potentials ��L+�R� /2 plays the
role of a mean chemical potential for the electrons in the
nanomagnet, tuning which modifies the equilibrium spectral
density and hence the linear-response conductance as well as
other equilibrium properties. In an experiment this mean

a) b)

FIG. 3. �Color online� The diagrams for one-loop corrections to
the electron Green’s function in the magnetic layer due to coupling
to spin fluctuations: �a� exchange �Fock� contribution ��d

eR and �b�
Hartree contribution ��d

hR. Wavy lines correspond to spin-spin corr-
elators 
S−�	�S+�−	�.
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chemical potential may be tuned by an external gate voltage.
Our purely antisymmetric combination �L=−�R avoids
these intrinsically equilibrium effects.

VI. SUMMARY

We have derived a Langevin equation for the magnetiza-
tion dynamics for a simultaneously applied ac and dc bias
across an N/F/N nanostructure. The magnetization dynamics
is characterized by a frequency-dependent noise, Eq. �15�.
We have also computed corrections to the I-V characteristics
to leading �1 /S2� order in the spin fluctuations. These fluc-
tuations are found to not only modify the Ohmic part of the

I-V characteristics but to also give rise to corrections that are
nonlinear in voltage, Eq. �26�. Experiments often exhibit
nonlinear I-V curves6 but the origin of the nonlinearities is
usually not clear. The usefulness of our result is that the
current is a function of three independent experimentally
tunable parameters �the dc bias V, the ac amplitude Vac and
frequency 	0� which can in principle allow one to extract the
physics arising only from magnetization dynamics.
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